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Solutions of the Dirac wave equation representing an electron moving
in a uniform electric field are obtained. The spinor representation of α and
β matrices is applied. The wave functions are nonstationary. D’Alembert’s
method of solving second order partial differential equations is used. None-
xplicit expressions of energy and momentum are obtained. The expressions
are relativistically correct. To obtain explicit values of them the quasi-
classical interpretation of wave function is used. The probability of trans-
mitting electrons through a uniform electric field barrier is calculated to be
one.
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1. Introduction

Fritz Sauter was the first who tried to solve the Dirac equation for the
case of a uniform electric field [1]. He put the potential V into the form

V = νx (1)

and looking for a solution made the following Ansatz

ψ = e
i
h̄

(ypy+zpz−Et)χ(x) . (2)

Unfortunately, he did not investigate whether an electron had or not sta-
tionary wave functions in that field.

Next was Milton Plesset [2]. He considered the case for which V is a
polynomial of any degree in x,

V =
q∑

n=0

anx
n, (0 < q <∞). (3)

(1)
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He sought solutions of the same form as Sauter and also did not study the
problem of existing stationary wave functions.

One can find another attempt made by Vernon Myers [3]. He treated
the Dirac equation the same way as Sauter except that his solution was not
stationary. He assumed the solution to be

Ψ =


A1
A2
A3
A4

 eik·r, (4)

where A1, A2, A3, A4 were functions of time , kx = k0x + εEt
h̄ , ky = k0y,

kz = k0z, ε charge, E a constant, k0x and k0y and k0z were constants.
Components A1, A2, A3, A4 he obtained were rather complicated, given by
a power series and exponent. They did not look like components of free
bispinor.

All the above mentioned solutions have disadvanteges.

1. One can easily prove that non-stationary are all solutions of the Dirac
equation for the motion of a charged particle in a uniform electrostatic
field of infinite extent.

2. The uniform electric field is used in electrostatic accelerators where
accelerated particles behave almost like the free ones. They easily pass
through accelerating tube and are easily focused [4,5]. That is why one
could expect a bispinor representing the Dirac particle moving in that
field should resemble the free bispinor.

2. Stationary and non-stationary solutions of the Dirac equation

Dirac’s equation may be put in the form of an expression for the time
derivative [6,7]

ih̄
∂Ψ(r, t)
∂t

= HΨ(r, t), (5)

where H is the Hamiltonian of the particle. The expression for H may be
written as

H = {cα · (p− e

c
A) + βmc2 + eA0}, (6)

where

p =
h̄

i
∇, (7)
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is the momentum operator, Aµ = (A0,A) is 4-vector potential of the elec-
tromagnetic field, Ψ is four-dimensional column vector (a bispinor), α and
β are Dirac matrices in the standard or in the spinor representation. The
charge together with its sign is meant, so that for the electron e = − | e |.

When A0 6= 0 or A 6= 0 the Dirac equation is a system of four partial
differential equations. In order to find solutions of the Dirac equation for
the motion of an electron in a uniform electrostatic field it is worth to make
some choices as follows

1.
A = 0, A0 = A0 6= 0, (8)

2.

Ψ(r, t) =
(
ϕ(r, t)
χ(r, t)

)
, (9)

3.

α =
(
σ 0
0 −σ

)
, β =

(
0 1
1 0

)
, (10)

where α and β are Dirac matrices in the spinor representation and
σ are Pauli matrices.

For subsequent reference Pauli matrices are written out below

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (11)

and for simplicity the notation is used

x0 = x0 = ct. (12)

Hence the Dirac equation (5,6,7) splits up into two coupled equations and
they can be written as

(
∂

∂x0 + σ ·∇− eA0

ih̄c
)ϕ =

mc

ih̄
χ, (13)

(
∂

∂x0 − σ ·∇−
eA0

ih̄c
)χ =

mc

ih̄
ϕ. (14)

Now one multiplies equations (13) and (14) by ih̄
mc and introduces the

notation

L+ =
ih̄

mc
(
∂

∂x0 + σ ·∇− eA0

ih̄c
), (15)
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L− =
ih̄

mc
(
∂

∂x0 − σ ·∇−
eA0

ih̄c
), (16)

so that (13) and (14) can be rewritten as

L+ϕ = χ, (17)

L−χ = ϕ. (18)

If one takes equation (17) as a formula for function χ and puts it into (18)
just for χ, one will obtain an equation of the second order only for ϕ. One
can treat likewise the function ϕ in equation (18) and insert it into (17) to
receive an equation only for χ. Thus one obtains two systems of equations
defining a solution of the Dirac equation, namely

L−L+ϕ = ϕ,L+ϕ = χ, (19)

and
L+L−χ = χ,L−χ = ϕ. (20)

The second order equations of both systems are independent of each
other because, due to the fact that operators (15) and (16) do not commu-
te, they are different equations. However, system of equations (19) as well
as system (20) each of them individually are completely equivalent to the
initial Dirac equation not only if the potential A0 is non-zero, but also when
A is, see [8]. Therefore, in order to get a full set of solutions of the Dirac
equation one has to solve only one of these systems.

Now one would like to solve the second order equation of (19) that may
be written as

(∇2 − ∂2

∂(x0)2 +
2eA0

ih̄c

∂

∂x0 +
eσ ·E
ih̄c

+
e2A2

0

h̄2c2
− m2c2

h̄2 )ϕ = 0. (21)

Still one can simplify (21) without any loss of generality and that is why
one takes the uniform electrostatic field to be in the negative z direction

A0 = εz,E = −εk, (22)

where ε is a positive constant, and takes momentum components px and py
to be zero. Therefore, spinor ϕ is a function of z and x0 alone.

The fundamental question is whether or not equation (21) has stationary
solutions? Setting

ϕ(z, t) = Z(z)T (t), (23)
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and separating the variables, equation (21) takes the form,

∂2Z(z)
∂(z)2

Z(z)
+
e2ε2z2

h̄2c2
− eεσz

ih̄c
− m2c2

h̄2 =
( ∂2

∂(x0)2 − 2eεz
ih̄c

∂
∂x0 )T (t)

T (t)
. (24)

Because of the term

−2eεz
ih̄c

∂

∂x0 , (25)

that depends on both variables x0 and z, on the right-hand side of (24) one
can not have a function of only t set equal to a function of only z . This
leads us to a conclusion that a Dirac particle, electron or positron or miuon,
moving in a uniform electrostatic field does not have any stationary wave
functions.

3. Search for d’Alembert’s solution of the Dirac equation

The time has come to take into consideration one of leptons, namely an
electron and set e → −e. Taking into account (22) one obtains from (21)
the following equation for spinor ϕ

(
∂2

∂z2 −
∂2

∂(x0)2 −
2eεz
ih̄c

∂

∂x0 +
eεσz
ih̄c

+
e2ε2z2

h̄2c2
− m2c2

h̄2 )ϕ = 0. (26)

From (19) the equation for spinor χ then reads

χ =
ih̄

mc
(
∂

∂x0 + σz
∂

∂z
+
eεz

ih̄c
)ϕ. (27)

The second order equation (26) in two variables z and x0 is hyperbolic
[9,10,11]. Typical hyperbolic equation is the wave equation. It and the other
hyperbolic equations can be solved by the method of characteristics. The
solution of these equations is usually known as d’Alembert’s solution. One
route to the solution begins with a change of variables. Let

x = (z − x0)
√
α, (28)

y = (z + x0)
√
α (29)

be new co-ordinates and
α = eε/4h̄c (30)

ω = mc/2h̄
√
α. (31)

new constants. Of course spinors ϕ and χ are

ϕ =
(
ϕ1

ϕ2

)
, χ =

(
χ1

χ2

)
. (32)
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Owing to the fact (11) that σz matrix is diagonal the upper component ϕ1 is
independent of the lower ϕ2 and also the upper component χ1 is independent
of the lower component χ2. Finally, one is ready to find ϕ1 and χ1. In order
to do that one has to solve the following set of equations

(
∂2

∂x∂y
− i(x+ y)(

∂

∂x
− ∂

∂y
) + (x+ y)2 − i− ω2)ϕ1 = 0, (33)

χ1 =
i

ω
(
∂

∂y
− i(x+ y))ϕ1. (34)

Let us focus on equation (33). There is Riemann’s method for solving
any linear hyperbolic partial differential equations of the second order in
two independent variables but the solution is too complicated to use for
practical application. That is why we will use an idea of trial function from
the Ritz variational method [12]. One can observe that a function

ϕ1 = exp[i{(x+ y)2/2}] (35)

almost satisfies equation (33). Therefore, one takes trial function of the form

ϕ1 = exp[i{(x+ y)2/2 + bf(x, y)}], (36)

where b is a constant and substitutes it into (33). It is expected to obtain a
set of equations for function f(x,y) that is easy to integrate.

After some differentations and simplifications one obtains an equation
for ϕ1

[b(i
∂2f

∂x∂y
− 2(x+ y)

∂f

∂y
− b∂f

∂x

∂f

∂y
)− ω2]ϕ1 = 0. (37)

It is satisfied only when the expression in square brackets

b(i
∂2f

∂x∂y
− 2(x+ y)

∂f

∂y
− b∂f

∂x

∂f

∂y
)− ω2 (38)

is equal to zero. It is complex functional relation and is equal to zero only
when its real part is equal to zero and its imaginary part, too. The imaginary
part of (38) equated to zero reads

∂2f

∂x∂y
= 0. (39)

It is the wave equation in new variables x and y. The solution to it is

f(x, y) = g(x) + h(y). (40)
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This leads us to the conclusion that a solution of the equation (39) is a sum
of a function g of x alone and a function h of y alone.

The real part of (38) equated to zero gives

b
dh

dy
(2y + 2x+ b

dg

dx
) + ω2 = 0. (41)

Since function g must not depend on variable y then the equation for
the function must take the following form

2x+ b
dg

dx
= C. (42)

On the other hand function h must not depend on variable x and equation
for it must take the form

(2y + C)b
dh

dy
+ ω2 = 0. (43)

C is a constant. Both equations (42) and (43) are easy to integrate and their
solutions are

g(x) =
−x2 + Cx+ C1

b
, (44)

h(y) =
−ω2

2b
ln|2y + C|+ C2. (45)

C1 and C2 are some new constants. Since g(x) and h(y) are already known
then spinor component ϕ1 is

ϕ1 = C1e
i[−ω

2

2 ln|2y+C|+ (x2+y2)
2 −x2+Cx], (46)

where C and C1 are some constants. In order to obtain χ1 one differentiates
ϕ1 with respect to y and from (34) it follows that

χ1 =
ω

2y + C
ϕ1. (47)

Finally, a wave function that is the nonstationary solution of the set of
equations (33) and (34) can be expressed in the form:

Ψ(x, y) =


1
0
ω

2y+C
0

C1e
i[−ω

2

2 ln|2y+C|+ (x2+y2)
2 −x2+Cx]. (48)



8 dirac-uniform-electric-field printed on 30 maja 2016

4. General properties of the nonstationary solution of the Dirac
equation

Before investigating properties of the resulting electron wave function
(48) it will be better if one goes back to the old variables. The state vector
in variables z and x0, according to formulae (28) and (29), takes the following
form

Ψ(z, x0) =


1
0

mc2

eε
1

z+x0+D
0

C1e
i[−ω

2

2 ln|2(z+x0)
√
α+C|+α(z2+2zx0−(x0)2)+C(z−x0)

√
α ],

(49)
where new constant D has been introduced

D = C/2
√
α . (50)

It is time to get to know the energy and momentum of an electron in a
uniform electric field. According to [6] the kinetic momentum operator is

qµ = ih̄
∂

∂xµ
− eAµ. (51)

Now arises the question whether the state vector (49) is an eigenfunction of
energy or momentum operators?

Through the action of operator q0 (51) on the function Ψ(z, x0) (49) one
obtains

q0Ψ(z, x0) = E+ 1
2
Ψ(z, x0) + (52)

+


0
0

mc2

eε
−ih̄c

(z+x0+D)2

0

C1e
i[−ω

2

2 ln|2(z+x0)
√
α+C|+α(z2+2zx0−(x0)2)+C(z−x0)

√
α ],

where

E+ 1
2

=
m2c4

2eε
1

z + ct+D
+
eε(z + ct+D)

2
. (53)

Respectively, operator q3 (51) acting on the same function (49) yields

q3Ψ(z, x0) = p+ 1
2
Ψ(z, x0) + (54)

+


0
0

mc2

eε
ih̄

(z+x0+D)2

0

C1e
i[−ω

2

2 ln|2(z+x0)
√
α+C|+α(z2+2zx0−(x0)2)+C(z−x0)

√
α ],
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where

p+ 1
2

= −m
2c3

2eε
1

z + ct+D
+
eε(z + ct+D)

2c
. (55)

Subscript +1
2 denotes spin-up state.

If imaginary coefficients mc2

eε
−ih̄c

(z+x0+D)2 in (52) and mc2

eε
ih̄

(z+x0+D)2 in (54)

were equal to zero, Ψ(z, x0) would be an eigenfunction of energy and mo-
mentum operators.

However, the question comes to one’s mind whether in the quantum
mechanics the linear eigenvalue equations associated with energy and mo-
mentum operators are correctly formulated?

It is worthy noticing that one of the postulates of quantum mechanics
tells us that the eigenvalues of all operators that represent physically me-
asurable quantities are real numbers. On the other hand, pointing out many
convincing arguments, in [16] Schiff states that a wave function that repre-
sents a particle traveling in the positive z-direction with precisely known
momentum p and kinetic energy E should be harmonic function of function

i

h̄
(pz − Et), (56)

and, at last for a free particle, the energy and momentum can be represented
by differential operators that act on the wave function.

Taking into account that an electron moving in a uniform electric field
behaves in a manner that is similar to that of free particle one comes to
a conclusion that differentiation of exponential function in (49) is the on-
ly ’source’ of electron energy and momentum, because only the function is
harmonic. In the process, column elements of bispinor in (49) do not give
any contribution to the energy or the momentum. That is why E+ 1

2
in (53)

is the energy eigenvalue and p+ 1
2

in (55) is the momentum eigenvalue. Thus,
energy and momentum eigenvalue equations should be redefined.

In [17] Nikishov and Ritus encountered the same problem, proceeded
the same way but gave no explanation. Therefore, we felt obliged to present
the above explanation.

One can easily observe that energy (53) and momentum (55) fulfil the
following statement

E − pc
mc2 =

mc2

eε

1
z + ct+D

(57)
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and owing to this the wave function (49) takes the final form as follows

Ψ+ 1
2
(z, x0) =


1
0

E−pc
mc2

0

C1e
i[−ω

2

2 ln|2(z+x0)
√
α+C|+α(z2+2zx0−(x0)2)+C(z−x0)

√
α ].

(58)
By direct substitution, you can check that received eigenvalues of energy

(53) and momentum (55) satisfy familiar relationship (59), which confirms
our belief that above conclusion was fully justified. (Below if they are not
necessary the subscripts +1

2 or −1
2 will be omitted.)

E2 = p2c2 +m2c4. (59)

As regards the bispinor that represents the spin-down state, it is given
by a solution of the following set of equations

(
∂2

∂x∂y
− i(x+ y)(

∂

∂x
− ∂

∂y
) + (x+ y)2 + i− ω2)ϕ2 = 0, (60)

and

χ2 =
i

ω
(− ∂

∂x
− i(x+ y))ϕ2. (61)

The solution is

Ψ− 1
2
(z, x0) =


0
1
0

E+pc
mc2

C1e
−i[−ω

2

2 ln|2(z−x0)
√
α+C|+α(z2−2zx0−(x0)2)+C(z+x0)

√
α ],

(62)
where eigenvalues of energy and momentum are

E− 1
2

=
m2c4

2eε
1

z − ct+D
+
eε(z − ct+D)

2
, (63)

and

p− 1
2

=
m2c3

2eε
1

z − ct+D
− eε(z − ct+D)

2c
(64)

respectively. The statement (59) also holds.

Both formulae (53) and (63) can be written as

E± 1
2

=
m2c4

2eε
1

z ± ct+D
+
eε(z ± ct+D)

2
. (65)
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In order to make a graph of function E± 1
2

for a moment we introduce new
variable x = eε(z ± ct+D) measured in MeV. Then for electron E± 1

2
(x) =

(0,511)2

2x + x
2 and is given in Figure 1.

Figure 1: Plot of E± 1
2
(x)

Function E± 1
2
(x) is not continous only at x = 0. One can easily see that

if x is negative the values of E± 1
2
(x) are negative, too. But when x is positive

the values of E± 1
2
(x) are also positive.

Let us introduce the following notation

u = z ± ct+D, (66)

a = m2c4/2eε, (67)

b = eε/2. (68)

Equation (65) now might be rewritten as

E(u) =
a

u
+ bu. (69)

One knows that E(u) has a minimum or a maximum at u0 if E′(u) exists
and E′(u0) = 0. We differentiate E(u) and the derivative equate to 0

dE(u)
du

= − a

u2 + b = 0. (70)
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The solution is u = ±mc2

eε and the value we denote as ±δ. The second-order
derivative of E(u) is

d2E(u)
du2 =

2a
u3 . (71)

At u = −δ the second-order derivative is negative, hence E(u) has local
maximum equal to

E(−mc2/eε) = −mc2, (72)

and if u = +δ then the second-order derivative is positive and E(u) has
local minimum equal to

E(mc2/eε) = mc2. (73)

From formulae (55) and (64) it follows that at u = ±mc2

eε electron momen-
tum is equal to 0 and at others u the momentum has always non-zero values.

We conclude, therefore, an electron moving in a uniform electric field has
exactly the same set of possible values of energy and momentum as the free
electron. When the variable u is negative E(u) and p(u) describe negative
energy solutions of the Dirac equation but when u is positive they describe
the positive ones. The same wave function represents negative and positive
energy solutions.

Finally, one ought to consider wave functions (58) and (62) in the context
of statistical interpretation of quantum mechanics. Unfortunately, things do
not look too good.

As a model probability density we can use Ψ†
+ 1

2
(z, x0)Ψ+ 1

2
(z, x0) equal

to

%(z, x0) = C2
1 (1 +

m2c4

e2ε2
1

(z + x0 +D)2 ). (74)

Let us take into account the following integral∫
%(z, x0)dz (75)

and for the moment x0 be an arbitrary but fixed point in time. Since function

1
(z + x0 +D)2 (76)

in (74) is always non-negative, then %(z, x0) (75) is always at least equal
to 1. Next, indefinite integral of function (76) is proportional to function

1
z+x0+D that is infinite at z + x 0 + D = 0 .
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On account of the above we conclude, first, on a restricted interval that
do not contain point where z + x 0 + D = 0 integral (75) openly depends
on time. Second, on unrestricted interval the integral is infinite.

Moreover, as E and p are not constants but functions, the states
Ψ+ 1

2
(z, x0) (58) and Ψ− 1

2
(z, x0) (62) can not even be normalized in the

sense that Ψ † Ψ=1 because the wave functions can not be divided by any
combination of E and p that is just opposite the case of free electron. For-
tunately, one can them normalize (only) at one point of space-time and it
will make possible below to calculate the ratios of transmitted and reflected
currents through a uniform electric field barrier.

According to the postulates of wave mechanics, probability can not open-
ly depends on time or be infinite. In our opinion, %(z , x 0 ) (74) can not be
interpreted as probability density and wave functions (58) and (62) do not
belong to a Hilbert space.

As regards the general form of solutions (58) and (62), they could be
represented schematically as

Ψ± 1
2
(z, x0) = C1up(z, x0)e

i
h̄
S±(z,x0), (77)

where C1 is a constant, bispinor up(z, x0) formally takes the same form as
in the case of the free-electron (see Appendix A) but constant values E and
p have been replaced with functions E±(z, x0) (53) or (63) and p±(z, x0)
(55) or (64). In turn, function S±(z, x0) very formally could be called an
action.

5. Quasi-classical interpretation of the non-stationary solution of
the Dirac equation

Take a look at the resulting formulas (53,55) and (63,64) for energy and
momentum. Variables of position and of time do not depend on themselves.
One can see that for each pair of variables (x, ct) we obtain a generally
different values of variables E and p. An electron can take every position
along the z axis at every time ct (for the convenience we do not distinguish
t from ct). This is completely different than in classical mechanics, where
a particle always travels along a curve and at a given moment of time ct
the particle can take only one position z.

From [4,5] you can find out that an elementary particle when passes
through accelerating tube of electrostatic accelerator behaves almost like
classical point-like object. This brings us to the conclusion that quantum
mechanics can not properly describe the motion of charged particles in a
uniform electric field.
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Therefore, we are going to deviate from quantum theory and into for-
mulae for energy and momentum will substitute values of variables z and ct
resulting from relativistic Newton’s second law of motion. In other words,
we limit available values of position and time to a subset of the (z,ct)-plane.

According to the relativistic classical mechanics [13], the second New-
ton’s law of motion when applied to a charged particle moving in a uniform
electric field is

d

dt
(

mv√
1− v2

c2

) = qε. (78)

Let us remind that we have solved the Dirac equation with a potential
A0 = εz, where the electric field is -εk and the electron charge is -e. The
electric force acting on the electron is equal to eεk and the electric charge
moves in the positive direction of the z-axis .

Therefore, equation (78) correctly describes the motion of our electron,
if q = +|e|. Integrating this equation we obtain that

mv√
1− v2

c2

= p0 + qεt, (79)

where p0 is the linear momentum of the electron at the moment of time t=0.
From equation (79), in turn one calculates that electron velocity is given as

v = ±
c(p0
qε + t)√

(p0
qε + t)2 + m2c2

q2ε2

. (80)

Since v = dz
dt the above equation can be considered as a differential equation

for z. Integrating it by means of a substitution we conclude that the position
z and the time ct are related to each other by the following equation

z = C ±
√

(γ + ct)2 + δ2. (81)

Here, C is a constant, δ = mc2

eε , γ = p0c
eε and we took q = e and e > 0.

We set about analysing the motion of spin-up electron and ask question
whether we can adjust the constant D in formulae (53) and (55) to the
constant C in the formula (81) in order that the formulae (53) and (55)
could correctly describe the motion of the electron?

For simplicity let p0 = 0. We assume that at time ct = 0 the electron
is located at z = 0 and then moves in the positive direction of the z-axis.
Then must be

z = −δ +
√
t2c2 + δ2. (82)

Similarly, so that E+ 1
2

be equal to mc2 and p+ 1
2

to 0 at point ct = 0 and
z = 0 constant D must be equal to δ.
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Energy E+ 1
2

can be expressed as a function of z alone. In order to do
that we have to solve equation (82) for variable ct and obtain

tc = ±
√

(z + δ)2 − δ2. (83)

Since the electron ’moves’ along ct axis only in the positive direction we
choose sign ’+’ in (83) and insert it into (53). After some operations applied
to (53) we finally obtain desirable result

E+ 1
2

= mc2 + eεz. (84)

On the other hand, momentum p+ 1
2

can be easily expressed as a function
of t alone. We insert (82) into (55) and D = δ, after some operations we get

p+ = eεt. (85)

As regards energy E− 1
2

(63) and momentum p− 1
2

(64) the same calcula-
tions can be made. Therefore, equations (84) and (85) also hold for electron
spin-down wave function.

Since application of formulae (82) and (83) gave good results we are
going to investigate the case thoroughly.

Let us remind the well-known fact about Schrödinger equation. If its
solution can be written as

Ψ = ae(i/h̄)S , (86)

then the function S satisfies the Hamilton-Jacobi equation if we neglect the
term containing h̄2 [18,19]. S is the action of a particle. And what about the
Dirac equation in the uniform electric field?

At first let us consider the relativistic Hamilton-Jacobi equation. If elec-
tron motion is described by equations (26,27) then its Hamilton’s function
is

H = c
√
p2
z +m2c2 − eεz. (87)

As Hamiltonian (87) does not involve time explicitly, then the action can
be given as

S = S0(z)− ht, (88)

where h is an arbitrary constant and the Hamilton-Jacobi equation takes
the following form [20,21]

H(z,
∂S0

∂z
)− h = 0. (89)

Since momenta px and py are equal to 0 one can write S0 = Sz, of course.
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In order to set the constant h we will use the above assumption that at
time ct = 0 the electron is located at z = 0 where it is temporarily at rest,
its momentum is equal to 0 and potential energy also equal to 0, and next
it moves in the positive direction of the z-axis. Then from (87,89) appears
that

h = mc2, (90)

and finally the Hamilton-Jacobi equation we have to integrate is

c

√
(
∂Sz(z)
∂z

)2 +m2c2 − eεz −mc2 = 0. (91)

Integrating (91) and inserting resulting Sz into (88) we obtain classical
action of an electron in a uniform electric field in the form

Scl = C−m
2c3

2eε
ln |z+δ+

√
(z + δ)2 − δ2|+ eε

2c
(z+δ)

√
(z + δ)2 − δ2−mc2t,

(92)
where δ = mc2

eε as above.

In turn, according to (77,86), the ’quantum’ candidate for spin-up elec-
tron action in this field is

Squ = h̄[−ω
2

2
ln | 2(z+x0)

√
α+C | +α(z2 + 2zx0− (x0)2) +C(z−x0)

√
α ],

(93)
an expression contained in (58). One can easily see that (93) is not well-
defined. In order to remedy this we will again use the relation (83) with sign
’+’ and the result is

Squ(z = z(t)) = −m
2c3

2eε
ln

√
eε

h̄c
− m2c3

2eε
ln |z + δ +

√
(z + δ)2 − δ2|+

+
eε

2c
(z + δ)

√
(z + δ)2 − δ2 −mc

√
(z + δ)2 − δ2. (94)

Since classical mechanics does not know Planck’s constant h̄ we have to set
C=0 in (92) and to drag constant −m2c3

2eε ln
√

eε
h̄c in (94) into constant C1 in

(58). The last term in (94) with formula (83) can be written as −mc2t and
at last we have

Scl = Squ(z = z(t)). (95)

Due to the similarity of wave functions (77) to the free electron solutions it
is worth asking whether the general form of the solution (77) has something
to do with used in quantum mechanics the quasi-classical wave function?
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Let us recall that the classical action for a motion of free electron has
the form

S = p · r− Et+ C, (96)

and it perfectly agrees with the formulas (.116) and (.117). Through the
action of energy and momentum operators on (.116) and (.117) we obtain
its correct eigenvalues.

If instead of function S±(z, x0) we put into (77) the classical action in
a uniform electric field Scl given by equation (92), we will get that the
eigenvalue of energy operator q0 (51) acting on (77) is equal to that of
formula (84) and the eigenvalue of momentum operator q3 (51) also acting
on it is

eε

c

√
(z + δ)2 − δ2 (97)

that is equal to (85) through (83). In conclusion we can say that

Ψ± 1
2 ,quasi−classical

= Ψ± 1
2
(z, x0)|z=z(x0), (98)

where Ψ± 1
2
(z, x0) is given by (77) and |z=z(x0) means that electron moves

along classical trajectory z = z(x0).

6. The probability of transmitting electrons through a uniform
electric field barrier

The goal of the following investigation is to calculate the transmission
coefficient for a potential of the form

A0(z) = 0, z < 0, (99)

call it region I and
A0(z) = εz, 0 ¬ z < +∞, (100)

call it region II, where as previously ε is a positive constant. The electron
approaches from a region of negative z and is reflected or transmitted by
the barrier of linearly increasing potential.

Due to the different forms of the potential the two regions must be
treated separately [14]. In region I (for z < 0) the spin-up solution of the
Dirac equation is (Appendix A)

ΨI,+ 1
2

(z, t) = a


1
0

E−pc
mc2

0

 e ih̄ (pz−Et) + b


1
0

E+pc
mc2

0

 e ih̄ (−pz−Et), (101)
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where the second part of the wave function describes the reflected wave.
In region II (of constant electric field) the spin-up electron is represented
by the following wave function

ΨII,+ 1
2
(z, x0) = d


1
0

E−pc
mc2

0

 ei[−ω2

2 ln|2(z+x0)
√
α+C|+α(z2+2zx0−(x0)2)+C(z−x0)

√
α ].

(102)
The Dirac equation contains only first-order derivatives and therefore

we need to impose on the solutions (101) and (102) only one requirement
that Ψ+ 1

2
(z, t) be continous at z = 0 and t = 0.

Let electron energy and momentum before the region of non-zero field
are arbitrary. In order not to lose generality of our calculations we will take
energy and momentum of the electron in the electric field as E′ and p′, i.e.
they will be different from those of the free electron and the constant in
(102) must be marked as C ′ ( and D′ respectively).

When z = 0 and t = 0 the values of the exponents of solution (101) are
equal to 0 but the same of (102) is equal to

−iω
2

2
ln|C ′|, (103)

where due to the previous adjustment of constant D (50) the constant C’ is
equal to

C ′ = 2D′
√
α. (104)

Requiring that the wave function must be continous at z = 0 and t = 0
leads to the relations

a+ b = d · e−i
ω2

2 ln|C′|,

a(E − pc)
mc2 +

b(E + pc)
mc2 =

d(E′ − p′c)
mc2 · e−i

ω2

2 ln|C′|. (105)

From these two equations we may find the ratios b
a and d

a which take the
forms

d

a
=

2pc
(p′ + p)c− (E′ − E)

e+iω
2

2 ln|C′|,

b

a
=

2pc
(p′ + p)c− (E′ − E)

− 1. (106)

By proper adjustment of constant D ( in fact D’) in formulae (53) and
(55) we can make energy E’ and momentum p’ of the electron in the electric
field at z = 0 and t = 0 equal to energy E and momentum p of free electron.
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If E’=E and p’=p, then the ratio of the transmitted current to the
incident is |d|

2

|a|2 , which is equal to 1 and the ratio of reflected current to

the incident is |b|
2

|a|2 , which is equal to 0. Thus all of the incident current is
transmitted.

7. Conclusions

The need to find solutions to the Dirac equation in a uniform electric
field appeared in connection with the Bohr’s discussion with Heisenberg
and Sommerfeld on the Klein paradox [15]. Sauter [1] and Plesset [2] sought
stationary solutions, but did not notice that in this field the Dirac equation
has no such solutions.

Myers [3] was the first to obtain a non-stationary solution in that field.
He introduced to the equation a trial function given by formula (4) and
formulated the quantum mechanical expression for momentum using the fact
that in the classical mechanics the x-component of mechanical momentum
is

px = p0x + εEt, (107)

where ε is electron charge and E electrostatic field strength. Myers did not
explain why he had looked for non-stationary solution. In our opinion, My-
ers’ solution is not exact.

Above we have showed that the wave function of an electron moving in
a uniform electric field can be only non-stationary and presented its ano-
ther ( and exact ) two forms Ψ+ 1

2
(z, x0) Eq.(58) and Ψ− 1

2
(z, x0) Eq.(62).

They are eigenfunctions of energy and momentum operators. However, its
eigenvalues are not well-defined observables because they simultaneously
depend on position z and time t.

In order to compare Myers’ solution to ours we will use the language
of the Ritz variational method [12]. Although the method is for aproxima-
te determination of energy levels of the discrete spectrum, however, in our
opinion, its terminology here will be very useful. Myers’ and our solutions
belong to certain function spaces. In order to find a solution Myers made
many more assumptions as for the form of it than we did. In particular,
he chose a specific form of particle momentum but we did not. In other
words, the space of his solution is more restricted than of ours. The same
our solution is more general and broad.
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There is another very important fact about Myers’ wave function. As
formula (107) comes from classical mechanics it contains hidden assumption
that an electron in a uniform electric field moves along classical trajecto-
ry, i.e. its position is a function of time. Since Myers used (107) before
obtaining his solution he violated the Dirac equation where any relations
between variables x, y, z and t are not allowed. Equation (107) is only clas-
sical surogate used in quantum mechanics. In our opinion Myers’ solution
is only semiclassical by contrast with ours that is pure quantum mechanical.

To solve a nonstationary problem in quantum mechanics is not easy
task. In the relativistic one there is only one more system for which a non-
stationary solution can be found exactly. It is the case of an electron in the
field of an electromagnetic plane wave solved by Volkov [6,17]. Its kinetic
momentum also depends on position and time but only through the vector
potential of the plane wave that is why its time-average value is well defined.

In [20] Rubinowicz and Królikowski noted that if the time-dependence
of the wave-function can not be separated from the spatial dependence then
on the whole one can not attribute definite values of energy to the system.
So the fact that energy and momentum operators eigenvalues (53), (55),
(63), (64) are not well-defined is only general property of non-stationary
solutions of quantum equations.

Taking the above conclusions into account one can try to formulate the
following hypothesis. Since the quantum mechanics is not able to give defi-
nite values of energy and momentum of an electron, it is worth to use for
that purpose any other law of physics.

In section ’Quasi-classical interpretation of the non-stationary solution
of the Dirac equation’ we have applied with this end in view Newton’s se-
cond law. It gave correct values of electron energy and momentum and also
correct classical action. That is the source of unexpected conclusion that
in the uniform electric field an electron displays not only quantum features
but also the classical ones. The name ’quasi-classical’ has been attributed
to the Section 5 of caution. In our opinion, in that field an electron really
moves along classical trajectory.

The natural question appears what experimental application the new
solution of the Dirac equation could have? We will briefly explain.
We also tried to solve the same way the Klein-Gordon equation describing
bosons that has no spin. To obtain the equation in terms of variables x (28)
and y (29) is sufficient to remove term ’−i’ from equation (33). The term
describes the interaction between electron spin and the uniform electric field.
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The suitable trial function is

ϕ1 = exp[i{(x+ y)2/2− xy + bf(x, y)}]. (108)

Inserting formula (108) into the Klein-Gordon equation results in the follo-
wing set of equations

∂2f

∂x∂y
= 0, (109)

(∂f∂x = dg
dx , ∂f

∂y = dh
dy ) and

(x− bdh
dy

)(2x+ y + b
dg

dx
)− ω2 = 0. (110)

These two equations are contradictory to each other. One could integrate
the Klein-Gordon equation the above way if it contained a term similar to
the term that describes the interaction between electron spin and an electric
field.

The combination of the above conclusion and the calculations we have
made in section 5 indicate that interaction between the electron spin and
the uniform electric field determines the fact that the motion of the electron
in that field takes place in accordance with the Newton’s second law.

Hence, in our opinion, it would be desirable to make sure that movement
of charged spinless bosons in that electric field also takes place in accordan-
ce with the Newton’s second law. We have doubts about that.

Appendix A In order to obtain free solutions of the Dirac equation in
the spinor representation we return to equations (26) and (27), take into
account that relativistic hamiltonian for a free particle does not contain
electric charge (e = 0) and the equations become

(
∂2

∂z2 −
∂2

∂(x0)2 −
m2c2

h̄2 )ϕ = 0, (.111)

and

χ =
ih̄

mc
(
∂

∂x0 + σz
∂

∂z
)ϕ. (.112)

As a trial function we take

ϕ1 = Ce
i
h̄

(pz−Et) (.113)

and substitute it into (.111). Thus we obtain the familiar relation

E2 = p2c2 +m2c4. (.114)
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Substitution of (.113) into (.112) gives

χ1 =
E − pc
mc2 ϕ1, (.115)

and finally is

Ψfree,+ 1
2

(z, t) = C


1
0

E−pc
mc2

0

 e ih̄ (pz−Et). (.116)

Similarly, in the case of spin-down function ϕ2 as a trial function we
again take (.113) and obtain

Ψfree,− 1
2

(z, t) = C


0
1
0

E+pc
mc2

 e ih̄ (pz−Et). (.117)

Free electron solutions (.116) and (.117) can be represented schemati-
cally as

Ψfree,± 1
2
(z, t) = Cupe

i
h̄

(pz−Et), (.118)

where C is a constant and up is a four-component bispinor independent of
r and t contained in (.116) or (.117).
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